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Threading on the Node 

OpenMP works great if it is implemented 
correctly 
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Looking at KNL   
●  Lots of cores 

●  While MPI can run across all the cores, there are situations where MPI 
hits bottlenecks due to the number of MPI tasks on the node 

●  We ALWAYS want to run multiple MPI tasks on the node 
●  Want to identify a MPI sweet spot 
●  A good guide is to start with a MPI task on each NUMA region 

●  OpenMP 
●  Traditional approach has many short-comings 

●  Requires a lot of code modifications 
●  Lots of Comment Line directives 
●  Does not deal with locality 
●  Difficult to load balance 

●  Is there a better way? 
●  SPMD OpenMP 

●  Fewer code modifications 
●  Requires a better understanding of threads 

●  KNL has NUMA issues 
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Why does all-MPI work well on multi/many core 
architectures? 

● All MPI forces locality 
●  Each MPI task allocated/utilizes memory within the NUMA region that 

it is running in. 
● All MPI allows tasks to run asynchronously 

●  This allows very good sharing of the memory bandwidth available on 
the node 

●  We have found that KNL Quadrant mode is very good for all-MPI due 
to the memory bandwidth sharing to all memories 

● One MPI disadvantage is that re-distributing work is 
difficult and inefficient 
●  Have to move a lot of data 
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Can we take clues from all-MPI advantages and 
disadvantages to design a good OpenMP code? 

● Can we force locality like MPI does? 
●  MPI forces each MPI task to allocate the data that it uses. 
●  Tradition OpenMP has no notion of locality 

● Can we allow threads to work asynchronously? 
●  MPI only barriers when messages are exchanged 
●  Tradition OpenMP implies barriers after a parallel region 
●  Loop level parallelism forces too much synchronization 

● Can we somehow control scheduling of the threads to 
enable more dynamic re-distribution of work 
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Can we force locality like MPI does? 

●  Introduce a high level !$OMP PARALLEL region 
●  Down the call chain the user is responsible for managing threads 

●  Initialize shared data within the !$OMP PARALLEL region, each thread 
allocates the data it will be using 

●  Application developer must assure that shared data is shared as in the 
Fortran/C/C++ convention 
●  This can be an issue down the call chain, when a shared local variable is 

required; that is, a reduction variable 
●  Application developer must assure that private data is allocated on stack as 

with the Fortran and C conventions 
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What if you need a shared variable down the call 
chain 

Subroutine within_a_parallel( ) 
  
Real, pointer ::  shared_p( : ) 
  
!$omp single 
allocate(shared_p(0:100)) 
!$omp end single copyprivate(share_p) 
  
… 
  
End subroutine 
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Can we allow threads to work asynchronously? 

● Must minimize sychronization 
●  Calling un-treaded routines 

●  Must extend concept to all computational kernels 
●  You can have replicated computation across the threads 

●  Calling library routines 
●  Can each thread call a un-threaded library routine 
●  If library routine is threaded – must barrier prior to and after call 

●  Calling MPI 
●  Consider having each thread do it own message passing 

●  Example coming 
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High-level OpenMP and Thread Scalable MPI-
RMA: 

 
Application Study with the Wombat Astrophysical MHD Code  

Slide 9 

Dr. Peter Mendygral 
Cray Inc. 
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Wombat Driver and Parallel Region 

Slide 10 
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Communication Concerns 

Slide 11 

●  If a rank is made much wider with threads, serialization around MPI 
will limit thread scaling and overall performance 
●  Nearly all MPI libraries implement thread safety with a global lock 
●  Cray is addressing this issue 

●  Released per-object lock library 
●  Threading enhancements under design now for two-sided (released per-object lock library 

a first step) 

●  Wide OpenMP also means more communication to process 
●  Every Patch now has its own smaller boundaries to communicate 
●  Starts tipping the behavior towards the message rate limit 
●  Two-sided tag matching cannot be done in parallel and will limit thread scaling 

●  May start hitting tag limit 

●  Slower serial performance of KNL => maybe look for the lightest 
weight MPI layer available 
●  MPI-RMA over DMAPP on Cray systems is a thin software layer that achieves 

similar performance to SHMEM 
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RMA Boundary Communication Cycle 

Slide 12 

●  Single passive RMA exposure epoch used for the duration of the application 
●  No explicit synchronization between ranks 
●  RMA semantics make computation/communication overlap simpler to achieve 
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Thread Hot MPI-RMA 

Slide 13 

●  DMAPP library was enhanced to be “thread hot” for SHMEM 
●  “thread hot” is more than “thread safe” 
●  “thread hot” implies concurrency and performance across threads was central to the design 

●  MPI-RMA over DMAPP leverages this feature as of MPT 7.3.2 
●  No locks used in DMAPP layer 
●  Very light weight locking in MPI layer 
●  Design makes it very likely that locks are uncontended 
●  Network resources efficiently managed among threads 
●  Performance approaches that of N independent processes when using N threads 

●  Example on HSW with 16 threads each on 2 nodes 
●  OSU passive MPI_Put bandwidth for 8 B message 
●  MPT 7.3.1 = 5.27 MB/s 
●  MPT 7.3.2 = 399.9 MB/s 
●  75X improvement 
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●  Tunable Patch size very important to performance 



C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
Slide 15 

●  Rank reordering 
●  Cartesian domain optimization for XC topology/placement improves largest run wall time by additional 

2.3% 
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●  Less than 8% difference between 1 and 36 threads per rank 
●  Ideal for application like Wombat is 0% 
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Can we somehow control scheduling of the threads 
to enable more dynamic re-distribution of work 

● With SPMD OpenMP, the user can take the responsibility  
for allocating the work to the threads 
●  Can be simple chunking 
●  Can understand the scarcity of the problem and allocate work 

accordingly 
●  Can dynamically use runtime statistics to address load-imbalance  
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What about performance portability 

● When running S3D on Titan we used Cuda Streams 
extensively 
●  Consider using the 16 Cuda streams for the 16 threads within the 

SPMD unit. 
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Example of Cuda Streams (1) 
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!$ACC DATA PRESENT(ids_lgl1,ids_ptr,ug,u) 
!$ACC& CREATE(ug2) 
      call rzero_acc(ug ,stride*n) 
      call rzero_acc(ug2,stride*n_nonlocal) 
 
      do k = 0,stride-1 
!$ACC PARALLEL LOOP GANG VECTOR ASYNC(k+1) 
!$ACC&  PRIVATE(il,sil,sig) 
        do i=1,nglobl       ! local Q^T 
!$ACC LOOP SEQ 
          do j = ids_ptr(i),ids_ptr(i+1)-1 
            il=ids_lgl1(j)             
            sil = k*n+il 
             if (i.le.n_nonlocal ) then     ! MPI 
              sig = k*n_nonlocal+i 
              ug2(sig) = ug2(sig)+u(sil) 
             else 
              sig = k*n+i 
              ug(sig) = ug(sig)+u(sil) 
             endif 
          enddo 
        enddo 
!$ACC UPDATE HOST(ug2(k*n_nonlocal+1:(k+1)*n_nonlocal)) ASYNC(k+1) 
      enddo 
!$ACC WAIT 
 
 



Example of Cuda Streams (2) 
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do k = 0,stride-1 
!$ACC UPDATE DEVICE(ug2(k*n_nonlocal+1:(k+1)*n_nonlocal)) ASYNC(k+1) 
 
!$ACC PARALLEL LOOP GANG VECTOR ASYNC(k+1) 
!$ACC&  PRIVATE(il,sil,sig) 
        do i=1,nglobl       ! local Q 
!$ACC LOOP SEQ 
          do j = ids_ptr(i),ids_ptr(i+1)-1 
            il = ids_lgl1(j) 
            sil = k*n+il 
            if (i.le.n_nonlocal ) then     ! MPI 
             sig = k*n_nonlocal+i 
             u(sil) = ug2(sig) 
            else 
            sig = k*n+i 
            u(sil) = ug(sig) 
            endif 
          enddo 
        enddo 
      enddo 
!$ACC WAIT 
!$ACC END DATA 



Conclusion 
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●  To scale well on many/multi-core systems, application 
developers must develop efficient threading 
●  Must pay attention to NUMA regions 
●  Must avoid overhead caused by 

●  Too much synchronization 
●  Load imbalance 

● On some systems all-MPI will perform very well and will 
out-perform poorly implemented OpenMP 
●  Not performance portable to hosted accelerators 

● SPMD or Wide OpenMP is an alternative 
●  Application developers have all the power to generate difficult to find 

race conditions, must understand the implications of high level 
threading 


